Solving the Reference Pathologist Paradox in Machine Learning Development for Histology Scoring Thomas Forest¹, Sabu Kuruvilla¹, Binod Jacob¹, Nagaraja Muniappa¹, Takayuki Tsuchiya¹, Raymond Gonzalez¹, Malini Roy², Raghav Amaravadi²,

Geetank Raipuria², Nitin Singhal²

¹Merck & Co., Inc., Rahway NJ, USA ²Aira Matrix, Mumbai, India

Abstract

Introduction – Development of machine learning (ML) algorithms for scoring histology slides commonly involves training against example histopathology findings (Supervised Learning). This approach creates a ML performance boundary based on the list of diagnoses included and the observations recorded by the reference pathologists. We hypothesized that a ML development strategy not requiring training against histopathology findings (Unsupervised Learning) could increase algorithm performance by identifying novel findings.

Design – Two ML algorithms were developed for scoring Han Wistar rat kidney histology. ML scoring was compared to the independent evaluations of 3 experienced toxicologic pathologists using a rat study of carbapenem, a classical renal toxicant.

Results – Scores from the ML trained using examples of renal tubular histopathology aligned closely with the consensus of the pathologist panel. Whereas scores from a ML trained only using histology from vehicle treated rats identified a subtle histomorphology difference in a dose group anticipated to be not remarkable based on previous studies and considered not remarkable by the consensus of the pathologist panel.

Conclusion – A ML algorithm that scored histology based on deviation from a model of normal histomorphology identified a subtle nonadverse difference between control and treated groups that ML trained using histopathology examples did not identify. These differences were not considered toxicologically noteworthy by a panel of experienced pathologists.

Impact – Advances in ML development for scoring histology slides introduce a novel frontier for detecting subtle histomorphology differences in nonclinical toxicology studies that may need to be incorporated into risk assessments in future workflows.

Group	Dose (mg/kg/day)	Females	Males
Control	0	3	3
Low	75	5	5
Mid	150	5	5
High	225	5	5
Note: 3 pathologists independently evaluated all animals.			

identified anomalous regions not considered noteworthy by the pathologists (lower panels). These regions of histomorphologic difference contained fine vacuolations in basolateral cytoplasm of renal tubular epithelial cells.